信号与信息处理·

基于图像不变特征的目标识别新方法

闫晓珂,杜翠兰,杨 洁

(91404部队,河北 秦皇岛 066000)

摘 要:基于飞机目标分析了*NMI*(归一化转动惯量)、不变矩、轮廓矩三种图像特征的不变性,提出了目标*NMI*特征提取的 新方法。实验表明,基于新方法提取的*NMI*特征与传统的*NMI*特征、不变矩提取算法相比,具有良好的平移、旋转、比例不变性, 且提取方法简单,易于实现。

关键词:NMI特征;不变矩特征;比例特征;目标特征

中图分类号:TP391.4 文献标识码:A

文章编号:1673-1255(2013)-01-0038-04

New Approach to Target Recognition Based on Image Invariable Feature

YAN Xiao-ke, DU Cui-lan, YANG Jie

(91404 Army Unit, Qinhuangdao 066000, China)

Abstract: Invariant feature of three images such as normalized moment of inertia (*NMI*), invariant moment and contour moment are analyzed based on airplane targets. New extraction methods of target *NMI* feature are proposed. The experiment shows that *NMI* feature extracted with the new method has good translation, rotation and scaling invariance compared with traditional *NMI* feature and invariant moment extraction algorithm. And extraction method is simple and easy to implement.

Key words: normalized moment of inertia (NMI)feature; invariant moment feature; scaling feature; target feature

图像目标识别在军事、医学等领域具有广泛的应 用。它可以借助模式识别方法,根据所需识别目标的 知识与被检测出目标的特征,判断待检目标是否属于 预先建立目标库中的目标类型^[1-2]。如果属于目标类, 则保留检测出的目标。如果不能归类于目标库中的目 标,则检测出的目标是背景或干扰,并将其去除。由于 待检测识别目标的距离不定,视场成像的方向角度不 同以及环境因素的影响,目标的比例大小、位置以及旋 转方向是任意的,灰度图像如利用分形或梯度算子等 方法提取边缘特征图像具有一定的抗灰度畸变性,但 其抗几何畸变(包括平移、旋转、比例)能力差^[3-4],因此, 寻求基于一种对灰度及几何畸变均不敏感的图像特征 即图像的不变特征的目标识别方法,在图像目标识别 中具有重要意义。目前,以目标不变特征为识别基础 的主要有七阶不变矩特征识别、廓序列矩特征识别以 及NMI特征识别等^[5-6]。七阶不变矩特征识别是通过计 算图像的7个不变矩进行匹配寻找目标的方法^[7];轮廓 矩是通过计算一个封闭数字化形状的全部边界像素和 质心间的欧氏距离的有序序列来刻画的;NMI特征识别 是以计算图像的归一化转动惯量(normalized moment of inertia)为不变特征进行目标识别的方法^[8-9]。以上三 种特征识别方法对于目标识别具有不同的识别效果和 处理速度,七阶不变矩、轮廓序列矩以及拓扑特征在一 定程度上具有较好的平移、旋转、比例不变性,但运算 量较大;图像的NMI特征具有良好的平移、旋转不变性, 但比例不变性较差。针对NMI(归一化转动惯量)、不变

收稿日期:2012-12-26

基金项目:第47批中国博士后科学基金资助(20100471809)

作者简介:闫晓珂(1969-)女,吉林人,博士,高级工程师,主要从事图像处理等方面工作.

矩、轮廓序列矩三种图像特征识别方法,基于飞机目标 分析了三种特征的不变性,针对NMI在目标识别中存 在的不足,提出了其改进算法,使其具有良好的平移、 旋转、比例不变性,以完成飞机目标的有效识别。

1 NMI 特征

1.1 定义

根据物理上重心的概念,定义灰度图像的质心 如下

$$cx = \frac{\sum_{x=1}^{M} \sum_{y=1}^{N} x \times f(x, y)}{\sum_{x=1}^{M} \sum_{y=1}^{N} f(x, y)} cy = \frac{\sum_{x=1}^{M} \sum_{y=1}^{N} y \times f(x, y)}{\sum_{x=1}^{M} \sum_{y=1}^{N} f(x, y)}$$
(1)

其中,质心(*cx*,*cy*)代表图像灰度的重心。图像围绕 质心(*cx*,*cy*)的转动惯量记为*J*(*cx*,*cy*)

$$J(cx, cy) = \sum_{x=1}^{M} \sum_{y=1}^{N} \left[(x - cx)^{2} + (y - cy)^{2} \right] \times f(x, y)$$
(2)

根据图像的质心和转动惯量的定义,可给出灰度图像绕质心(cx,cy)的NMI^[10]

$$NMI = \frac{\sqrt{J_{(cx, cy)}}}{m} = \frac{\sqrt{\sum_{x=1}^{M} \sum_{y=1}^{N} \left[(x - cx)^2 + (y - cy)^2 \right] \times f(x, y)}}{\sum_{x=1}^{M} \sum_{y=1}^{N} f(x, y)}$$
(3)

其中, $m = \sum_{x=1}^{M} \sum_{y=1}^{N} f(x, y)$ 为图像的质量,代表图像

所有灰度值之和。

1.2 NMI 特征不变性分析

以图1中三种型号飞机为目标库中的模板图,三 种型号飞机的平移、旋转、比例变换图像分别如图2、 图3、图4所示。

图2 飞机1图像序列

图3 飞机2图像序列

图4 飞机3图像序列

对于平移畸变,即 $x'=x+\Delta x, y'=y+\Delta y$, $\Delta x, \Delta y$ 分别为横向与纵向的平移量,由式(1)可知, 平移后的图像重心为 $cx'=cx+\Delta x, cy'=cy+\Delta y$ 。 平移后的图像目标区各点到其图像重心的距离大小 没有改变,NMI具有平移不变性。

由于待检测识别目标的距离不定,视场大小及 成像的方向角度不同,实际目标成像的比例大小及 旋转方向是任意的。因而,根据式(3)并实际仿真实 验结果证明,NMI旋转、比例不变性较差。

2 NMI特征提取的改进算法

由于待检测目标的距离不定,则目标的大小是 任意的,待检测目标边缘点数与库中目标的边缘点 数不同很大程度上影响图像的 NMI 特征比例不变 性。因此,根据归一化转动惯量的定义,提出一种改 进方法,即待检测目标边缘必须与库中目标边缘进 行维数匹配。

2.1 边缘点搜索

由于物体的边缘十分复杂,顺序提取物体的边 缘很困难。采用一种优先级探测搜索法顺序提取边 缘,首先根据搜索方向,从边缘走向最有可能发生的 位置,按轮廓的顺时针方向进行搜索。由于物体具 有封闭轮廓,边缘搜索有左、右、上、下四个方向。在 向右搜索时,物体的图像在下方;向左搜索时,图像 在上方;向下搜索时,图像在左边;向上搜索时,图像 在右边;搜索方向及优先级如图5所示。

上图搜索优先级1~6依次降低。从最高优先级 位置开始搜索,只有当高优先级位置探测不到边缘, 才能搜索次优先级位置。并将搜索方向置为对应方 向。当搜索的位置与第一次搜索位置相同时,完成 物体的边缘提取。

2.2 形状匹配

由于待检测目标的距离不定,则目标的大小是 任意的,待检测目标边缘点数与库中目标的边缘点 数不同很大程度上影响图像的*NMI*特征比例不变 性。因此,根据归一化转动惯量的定义,提出一种改 进方法,即待检测目标边缘必须与库中目标边缘进 行维数匹配。设待检测目标边缘点数为*m*,需要匹配 的库中目标边缘点数为*n*,令

 $k = \operatorname{Min}(n, m), l = \operatorname{Max}(n, m) \tag{4}$

待检测目标按 // 比例进行缩放,使待检测目

标的点数与目标库中目标大致相等,利用缩放后的图 像作为待检测目标再进行归一化转动惯量特征匹配。 由于真、假目标的形状和灰度有较大不同,而待

-		
	日标废三种	飞机及甘肉俛它列 NMI
12.1	$P_{1}^{(m)} = P_{1}^{(m)}$	、加及共国家月7月14月1

	飞机1	飞机2	飞机3
目标库	0.034 964	0.034 544	0.048 178
F1	0.034 988	0.034 549	0.048 168
F2	0.034 985	0.034 544	0.025 3
F3	0.034 978	0.034 549	0.048 191
F4	0.035 005	0.017 276	0.048 275
F5	0.034 966	0.034 584	0.048 157
F6	0.035 005	0.034 565	0.025 21
F7	0.034 96	0.025 11	0.048 166
F8	0.034 973	0.000 27	0.048 218
F9	0.035 006	0.034 54	0.048 183
<i>F</i> 10	0.034 985	0.034 613	0.048 196

识目标有其特定的形状和灰度分布。用改进的*NMI* 计算出潜在目标的不变特征如表2所示,求与目标库 的平均绝对差(mean absolute difference, MAD)。当 MAD小于给定阈值*T*,则此为目标,否则是假目标。

表2 改进后目标库三种型号目标及其图像序列NMI

	飞机1	飞机2	飞机3
目标库	0.034 964	0.034 544	0.048 178
F1	0.035 006	0.034 549	0.048 168
F2	0.034 988	0.034 544	0.048 166
F3	0.034 864	0.034 549	0.047 913
F4	0.034 99	0.034 54	0.048 012
F5	0.034 966	0.034 509	0.048 157
F6	0.035 315	0.034 551	0.048 06
F7	0.034 96	0.034 576	0.048 165
F8	0.035 241	0.034 531	0.048 218
F9	0.037 645	0.034 434	0.048 183
<i>F</i> 10	0.034 981	0.034 544	0.048 205

3 仿真实验与分析

图 6 为飞机图像序列与目标库飞机1的七阶不 变矩绝对差均值。结果表明,七阶不变矩可以作为 目标静态特征进行目标识别,但变化范围较大,存在 一定的虚警概率,且计算量大。

轮廓序列矩绝对差均值

图7为飞机图像序列分别与目标库飞机1的轮 廓序列矩绝对差均值。结果表明,轮廓序列矩具有 较好的平移、旋转、比例不变性,但其灰度性较差。 相比较而言,轮廓序列矩的计算量比七阶不变矩低。

图 8、图 10、图 12为飞机图像序列分别与目标库 飞机的 NMI差,从仿真实验可以看出,针对上述不同 型号的飞机序列图像,NMI算法具有良好的平移,但 其旋转、比例不变性差,不能有效地识别飞机目标。

图8 飞机图像序列与目标库飞机1的NMI绝对差值

图9 改进后飞机图像序列与 目标库飞机1的*NMI*绝对差值

图 10 飞机图像序列与目标库飞机 2 的 NMI 绝对差值

图 11 改进后飞机图像序列与 目标库飞机 2 的 NMI 绝对差值

图 12 飞机图像序列与目标库飞机 3 的 NMI 绝对差值

图 13 以进后飞机图像序列与日标库飞机。 的 NMI 绝对差值

图 9、图 11、图 13 为改进后的飞机图像序列分别与目标库飞机的 NMI 差。试验结果表明,改进后的 NMI 特征具有良好的平移、旋转、比例不变性,能有效地识别不同型号的飞机目标,且计算量比较低。

4 结 论

文中针对NMI、七阶不变矩、轮廓序列矩三种图 像特征识别方法,基于飞机目标分析了三种特征的 不变性。不变矩、轮廓序列矩特征在一定程度上具 有较好的平移、旋转、比例不变性,但七阶不变矩运 算量较大;轮廓序列矩特征抗灰度畸变性差;而传统 的NMI特征旋转、比例不变性差。针对NMI在目标 识别中存在的不足,提出了基于快速搜索边缘点及 其维数匹配的改进算法,使其具有良好的平移、旋 转、比例不变性,且提取方法简单,易于实现。

参考文献

- John R Smith, Shih. Fu Chang.Tools and techniques for color image retrieval[R].Columbia University Department of Electrical Engineering and Center for Telecommunications Research, March 6, 1996.
- [2] PENG Ning-song, YANG Jie, LIU Zhi.Mean shift blob track (下转第50页)

(c)拼接后的图像 图5 原始图像和实验的处理结果

4 结 论

图像拼接技术具有广阔的应用前景,图像拼接 方法的研究受到国内外的广泛关注。近年来,其研 究成果不断取得新的进展。以上实验结果表明,该 系统可以自动地对存在一定重叠的两幅视频图像进 行实时拼接,获得无缝、清晰的大视场视频图像。由 于在寻找上一帧图像的特征列时,代码主要是加法 和减法运算,大大节省了CPU的开销,相对于其他需 要乘法、除法或根号等复杂运算的算法,提高了图像 拼接的效率,适合于工程中需要实时拼接的环境。 今后还将对更深层次的应用开发进行研究。

参考文献

- Texes Instruments Incorporated. TMS320DM642 Video Imaging Fixed–Point Digital Signal Processor Data Manual [Z]. Dallas,USA: Taxes Instruments Incorporated,2003:120–122
- [2] M.IRANI, S.PELEG. Improving resolution by image registration [J]. Graphical Models and Image Processing, 1991, 53: 231-239.

(上接第41页)

ing with kernel histogram filtering and hypothesis testing[J]. Pattern Recognition Letters, 2005, 26:605–614.

- [3] 江淑红, 王沁. 基于目标中心距离加权和图像特征识别的 跟踪算法[J]. 电子学报, 2006, 34(7):1175-1180.
- [4] 杨小冈,付光远.基于图像 NMI 特征的目标识别新方法[J].计算机工程, 2002, 28(6):149-151.
- [5] Jan Flusser. On the inverse problem of rotation moment invariants[J]. Pattern Recongnition, 2002, 35:3015–3017.
- [6] Kudo, M, Sklansky, J. Comparison of Algorithms that Select Features for Pattern Classifiers[J]. Pattern Recognition.

[3] A.AVERBUCH,Y.KELLER. FFT Based Image registration [A].IEEE international conference–ICASSP// [C]. Orlando, USA:IEEE,2002.IV:3608–3611.

- [4] Stein G. Accurate internal camera calibration using rotation with analysis of sources of error[J]. Proceedings of the 5th International Conference on Computer Vision, Cambridge MA, 1995:230–236.
- [5] Richard S. Video mosaics for virtual environments[J]. IEEE Computer Graphics and Applications,1996,16(2):230.
- [6] S Negahdaripour, X Xu, A Khamene. A vision system for real-time positioning, navigation, and video mosaicing of sea floor imagery in the application of ROVs/AUVs// [C]. Applications of Computer Vision, Fourth IEEE Workshop on Proceedings, 1998, (8):248–249.
- [7] Maria G Almeida, Bernardo F T Rudorff, Yosio E. Shimabukuro. NOAAAVHRR Image mosaics applied to vegetation identification// [C]. Geo–Spatial Image and Data exploitation II, Proceedings of SPIE, 2001,4383:31–35.
- [8] B Kaya, A Berkay, F Erzincanli.Robot assisted tiling of glass mosaics with image processing[J]. Industrial Robot,2005,32 (5):388-392.
- [9] ShenChang Eric CHEN.QuickTime VR:an image-based approach to virtual environment navigation[A]. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques// [C]. New York, USA:ACM Press,1995:29–38.
- [10] REDD B S,CHATTERJI B N An FFT-based technique for translation,rotation, and scale-invariant image registration
 [J]. IEEE Trans on Image Process,1996,5(8):1266-1271.
- [11] 钟力,胡晓峰.重叠图像拼接算法[J]. 中国图像图形学报,1998,5(5):367-370.
- [12] 孙华燕,周道炳,李生良.一种序列图像的拼接方法[J]. 光学精密工程,2000,8(2):35-37.

2000, 33(1):25-41.

- [7] 安玮.透视变换不变性研究及三维空问目标的识别[D].长沙:国防科技大学,1995,1.
- [8] Gonzalo N, Mathieu R.Flexible pattern matching in strings:
 柔性字符串匹配[M]. 中科院计算所网络信息安全研究组,译. 北京:电子工业出版社,2007:135-136.
- [9] Han Jiawei, Kamber M.数据挖掘[M]. 2版. 范明,孟小峰,
 译. 北京:机械工业出版社,2007:200-204.
- [10] 张问银,唐建国,曾振柄.基于NMI不变特征的图像检索 方法[J]. 计算机应用,2003 (9).